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KOENO GRAVEMEIJER 

12. RME THEORY AND MATHEMATICS 

TEACHER EDUCATION 

The theme of this chapter concerns the question of how mathematics teacher 
education can prepare prospective teachers for mathematics education that is in 
line with the domain-specific instruction theory for realistic mathematics education 
(RME) – which aims at helping students to construct or reinvent mathematics. 
Before answering this question, a reinvention approach that may avoid the 
problems that are inherent in more conventional approaches to mathematics 
education is elucidated. Next, the RME approach is elaborated in terms of the 
instructional design heuristics, guided reinvention, didactical phenomenology, and 
emergent modelling. The main question of this chapter is addressed by 
subsequently investigating (a) what it takes to enable this form of mathematics 
education in the classroom, (b) how this translates to teacher competencies that 
are required, and (c) how these competencies may be fostered in mathematics 
teacher education. 

INTRODUCTION 

The goal of this chapter is to investigate the implications of the domain-specific 
instruction theory for realistic mathematics education – RME theory for short – for 
mathematics teacher education. The general point of departure of RME from 
conventional approaches is that students should be given the opportunity to 
reinvent mathematics. According to Freudenthal, who was the founding father of 
what we now call realistic mathematics education, mathematics has to be 
(re)invented. This singular point about student (re)invention or construction forms 
the basis for this chapter. I will therefore spend a part of the chapter justifying this 
position and try to show the shortcomings of mathematics education that is based 
on a view of learning as making connections between what you know and what 
you do not yet know. I will, then, illuminate how RME addresses those issues. It 
needs to be acknowledged that enacting an RME approach is quite different from 
theorising about it and that the RME approach is very demanding for teachers. This 
is why I also elaborate on the requirements that need to be fulfilled in order to 
bring about instruction that is consistent with RME principles. 
 The chapter has the following structure. I start by discussing the common view 
of learning as making connections between what one knows, and what one needs to 
learn. I do so by asking the question, ‘What makes mathematics so difficult?’ Next 
I argue that the alternative notion of learning as constructing or (re)inventing offers 
a better chance of helping students learn mathematics. Then, I describe the RME 
approach as an example of a domain-specific instruction theory that tries to give 
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directions for how to guide students in such a process. I do this by elaborating 
RME in terms of three instructional design heuristics: (1) guided reinvention, (2) 
didactical phenomenology, and (3) emergent modelling. Finally, I turn to the 
question, what does it take to effectuate the intended form of mathematics 
education in the classroom? In this respect, I discuss the need for a ‘reinvention 
route’, the willingness of students to (re)invent, and the competency of the teacher 
to guide the reinvention process. These three requirements will be translated into 
teacher competencies, which are used for a final discussion of how teacher 
education may provide for such competencies. 

LEARNING AS MAKING CONNECTIONS 

The difficulty of learning mathematics is often explained by referring to the gap 
between the student’s personal knowledge and the abstract formal mathematical 
knowledge that needs to be acquired. From a constructivist perspective, however, it 
may be argued that the problem is not simply in the gap that has to be bridged. The 
problem is that, for the student, there is nothing at the other side of the bridge. The 
gap-metaphor presupposes an objective body of knowledge that exists 
independently of some agent. According to constructivism, knowledge is 
constructed by someone, and cannot be separated from the constructing individual. 
Thus for those who have not yet constructed the more sophisticated mathematical 
knowledge that has to be learned, this more sophisticated mathematical knowledge, 
literally, does not exist.  
 Nevertheless, the gap-metaphor seems to be rather generally treated as plausible. 
This may be explained by the fact that we, as adult mathematics educators, 
perceive our own abstract mathematical knowledge as an independent body of 
knowledge. We experience mathematical objects such as ‘tens’, ‘ones’, and 
‘hundreds’, for instance, or ‘linear functions’, to mention another example, as 
object-like entities that can be pointed to and spoken about. This experience relates 
not only to our individual mathematical sophistication, but also to our experience 
of being able to talk and reason about these ‘objects’ unproblematically while 
interacting with others. As a consequence, we may assume that we can talk and 
reason about these ‘objects’ with students as well. Likewise, teachers and textbook 
authors may take their own abstract mathematical knowledge for an external body 
of knowledge, which can be communicated to students. The difference between the 
abstract knowledge of the teachers and the experiential knowledge of the students, 
however, constitutes a serious source of miscommunication – as ample research 
shows. 
 Identifying a problem, however, is not the same as solving it. Constructivism in 
itself does not give an answer to how to teach mathematics. To elaborate this point, 
we may turn to Cobb’s (1994) discussion of the notion of ‘constructivist 
pedagogy’. He starts by observing that constructivism is often reduced to the 
mantra-like slogan that ‘students construct their own knowledge’. A mantra that, he 
argues, is not only erroneously treated as a fact that is beyond justification, but also 
as a direct instructional recommendation. Concerning the latter, the common line 
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of reasoning is that, since the students necessarily construct their own knowledge, 
the teacher’s role is limited to that of facilitating students’ investigations and 
explorations. Cobb (1994, p. 4), however, argues,  

On alternative reading, the constructivist maxim about learning can be taken 
to imply that students construct their ways of knowing in even the most 
authoritarian of instructional situations. 

 In other words, the assumption that students construct their own knowledge 
cannot be directly translated into an instructional recommendation. This does not 
mean that constructivism cannot play a role in developing an instructional 
approach for mathematics education, but the critical issue is not whether students 
are constructing, but what and how they are constructing. Thus, taking a 
constructivist perspective implies that one has to consider the question, what it is 
that we want the students to construct, and how we want them to construct it.  

LEARNING AS CONSTRUCTING OR INVENTING 

Many years ago, Freudenthal (1971, 1973) addressed the theme of what 
mathematics is, or what we want it to be for our students, from a different angle. 
He took his point of departure in the notion of ‘mathematics as a human activity’. 
Being a mathematician himself, he characterizes mathematics as the activity of 
mathematicians that involves solving problems, looking for problems, and 
mathematizing subject matter. The latter may concern mathematizing mathematical 
matter, or mathematizing subject matter from reality, in which mathematizing 
stands for organizing subject matter from a mathematical point of view. In his 
view, the main activity of mathematicians is that of mathematizing. The final stage 
of this activity is formalizing by way of axiomatizing. The result of this activity, he 
goes on to say, is taken as a starting point in traditional mathematics instruction. 
He calls this an anti-didactical inversion, for the endpoint of the work of 
generations of mathematicians is taken as the starting point for the instruction of 
students. As an alternative, he advocates for giving students the opportunity to do 
what mathematicians do. Instead of presenting mathematics as a ready-made 
product, he goes on to say, the primary goal of mathematics education should be to 
engage students in mathematics as an activity. Then, similar to the way in which 
the mathematical activity of mathematicians has resulted in mathematics as we 
know it, the activity of students should result in the construction of such 
mathematics. In this scenario, the students have to be supported in inventing 
mathematics. In this respect, Freudenthal (1973) speaks of guided reinvention. 
Guidance by teachers and textbooks is not only needed to ensure that the 
mathematics that the students invent corresponds with conventional mathematics, 
but also to substantially curtail the invention process. Students cannot simply 
reinvent the mathematics that took the brightest mathematicians eons to develop. 
Teachers need to help students along, while trying to make sure that the students 
experience their learning as a process of ‘inventing’ mathematics.  
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 Over time, Freudenthal’s ideas have been elaborated in the so-called domain-
specific instruction theory for realistic mathematics education (RME), which I 
elucidate in the following paragraphs. I start with an example, which concerns the 
constitution and flexible use of a framework of number relations up to 20. 

Flexible Arithmetic Up to 20 as an Example 

In the above, we marked the significant difference between the abstract knowledge 
of teachers and the experiential knowledge of students. Following Freudenthal 
(1991), we might even speak of different realities. He defines reality as, ‘what (…) 
common sense experiences as real’ (Freudenthal, 1991, p. 17). He argues that what 
is common sense for a layman is different from what is common sense for a 
mathematician. A similar distinction applies to teachers and students. We may 
illustrate this with the following example.  
 At a certain age, young children do not understand the question: How much is 
4+4? Even though they may at this stage very well understand that 4 apples and 4 
apples make 8 apples. The explanation for this apparent paradox is that, for those 
children, a number do not yet have an independent meaning in and of itself. For 
these children, numbers are tied to countable objects, as in ‘four apples’, ‘four 
marbles’, or ‘four ice creams’. ‘Four’ is more like an adjective than a noun for 
them. At a higher level, ‘4’ will be associated with various number relations, such 

as: 4 = 2+2 = 3+1 = 5-1 =
2

8
, and so on. At this higher level, numbers have become 

mathematical objects that derive their meaning from a network of number relations 
(Van Hiele, 1973). We might in fact speak of the construal of a new mathematical 
reality in which numbers are experienced as mathematical objects. 
 When elementary-school teachers talk about numbers, they may very well be 
speaking about mathematical objects, which are not part of the students’ 
experiential realities. The result is that teachers and students in fact speak different 
languages – without being aware of it. Teachers talk about numbers as 
mathematical objects that exist within a network of numerical relations. They may, 
for instance, explain that ‘7+6 equals 13 because 7+3 = 10, 6 = 3+3, and 10+3 
equals 13’. The students, however, who have not yet construed the necessary 
network of numerical relations and think of numbers as adjectives, cannot follow 
this line of reasoning. The result of this miscommunication will be that the students 
will have to revert to copying and memorizing.  
 According to Van Hiele (ibid), we may avoid this problem by helping students 
to construct a network of number relations, within which numbers have become 
mathematical objects. The goal will be that the students will come to have the 
experience of directly perceiving numerical relationships as they interpret and 
solve arithmetical problem situations. That is to say that they will be able to 
flexibly solve tasks such as ‘7+6’ by using numerical relationships that will be 
readily available for them, such as ‘7+3 = 10, 6 = 3+3, and 10+3’, or ‘6+6 = 12, 
6+1 = 7, and 12+1 = 13’, or ‘7+7 = 14, 6-1 = 7 and 14-1 = 13’. Although we may 
perceive these solutions, as applying strategies – such as ‘filling up ten’, and so on, 
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this does not have to be the case for the students. The instructional intent is that the 
students will be guided by their familiarity with number relations, and do not have 
to think of strategies.  
 This analysis suggests that the first step in a reinvention approach would be to 
involve the students in activities of structuring quantities in a wide variety of 
situations, to make them aware of the number relations involved, and to help them 
construct number relations by generalizing over the various situations. The 
question that arises here is which relations should be focused upon? To find an 
answer to this question, one may start by looking at research on students’ informal 
solution strategies. Research shows that students frequently develop strategies that 
make use of the doubles, and five and ten as points of reference (Gravemeijer, 
1994). The spontaneous use of five and ten as reference points can be traced back 
to the creation of finger patterns (Van der Berg & Van Eerde, 1985; Treffers, 
1991). Assuming that these patterns themselves may emerge as curtailments of 
counting on the fingers by one, instruction may start by working with finger 
patterns. Students may be asked, for instance, to show ‘eight’ in different ways, 
and the teacher may draw the attention to the number relations involved. Eight is 
shown as ‘5+3’, or as ‘4+4’, whereas it may also be construed as ‘10-2’. As a next 
step in a reinvention route, we may want students to use this knowledge to derive 
new number relations. As a means of support, students might use a so-called 
arithmetic rack (Treffers, 1991, see Figure 1), which is designed to support 
numerical reasoning in which five, ten, and doubles are used as points of reference.  
 

 

Figure 1. Arithmetic rack. 

 This device consists of two parallel rods each containing ten beads. The first 
five beads on the left of each rod are red, and the second five beads are white. 
Students use the rack by moving all beads to the right and then creating various 
configurations by sliding beads to the left. For example, if a student wants to show 
eight, he or she may move five beads on the top rod and three on the bottom, or 
he/she may move four beads on each rod. These ways of acting with the arithmetic 
rack may facilitate the use of the relations that come to the fore in finger patterns.  
 As a caveat, it should be noted that there is a danger of superficial learning in 
this set up. In fact, the only gain of the first example may be that, instead of being 
told that 4+4 equals 8, the students now ‘come to see’ that 4+4 equals 8. To avoid 
this, the instructional activities have to surpass the level of merely structuring sets 
of objects and reading of answers. Instead, we would want students be able to 
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reason that 4+4=8, on the basis of some counting procedure, for instance. An 
important issue here is that the number patterns that the students construct come to 
signify curtailments of the procedure for quantifying sets of objects by counting 
individual objects. In this manner, visual patterns, such as finger patterns, come to 
embody the results of counting, to use Steffe, Cobb, and von Glasersfeld’s (1988) 
terms. This implies that the students have to construe procedures for establishing 
sums or differences – such as counting on, and counting back – as extensions of the 
counting procedure that they use for quantifying sets of objects. The importance 
hereof is shown by research of Gray and Tall (1994), who observe that students, 
who have come to see the first and the latter as two unrelated procedures, do not 
use ‘derived facts’ strategies.  
 Similar risks are attached to the arithmetic rack. Here too, the intent is not that 
students will use the arithmetic rack configurations to read off number relations. 
Instead, students are expected to use the arithmetic rack as a means of scaffolding. 
To be able to use the arithmetic rack in this manner, students already have to have 
developed five-, ten-, and doubles-referenced number relations. To find the sum of 
6 and 7, for instance, the students may then use their knowledge that 6=5+1 and 
7=5+2 to visualize 6 and 7 on the rack as 5 red and 1 white on the top rod and 5 red 
and 2 white on the bottom rod, then to subsequently take the two fives together and 
reason, that 6+7 = 5+1+5+2 = 10+3 = 13. Or they may realize that 7=6+1, and 
6+6=12, and relate this to of 6 on the top rod and 6 at the bottom and reason 7+6 = 
12+1 = 13, while pointing to the rack.  
 As our example shows, the design of an instructional sequence that may give 
rise to a reinvention process is rather complicated. We would not expect teachers to 
design such instructional sequences themselves. This is a far more demanding task 
than what is usually taken on in lesson studies. Fortunately, however, that will not 
be necessary. Since the early 1970s, researchers/instructional designers at the 
Freudenthal Institute and elsewhere have worked on developing instructional 
sequences that would fit Freudenthal’s conception of guided reinvention. An 
important aspect of this work was the explication of the rationales behind each of 
the instructional sequences. Such a rationale, or local instruction theory, consists of 
a theory about a possible learning process for a given topic, and the means of 
supporting that process. The theory is called local in that it is tailored to a given 
topic, such as addition of fractions, multiplication of decimals, or data analysis. 
Each local instruction theory offers a description of, and rationale for, the 
envisioned learning path as it relates to a set of instructional activities for a specific 
topic.  
 The local instruction theories developed at the Freudenthal Institute have been 
taken as a basis for the construal of a more general instructional theory. By 
generalizing over those local instruction theories, Treffers (1987) deduced, what he 
called, a framework for a domain-specific instruction theory for realistic 
mathematics education. Later, RME theory was recast in terms of three design 
heuristics: guided reinvention, didactical phenomenology, and emergent modelling 
(Gravemeijer, 1989), which I will discuss in the following section. 
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RME THEORY 

Guided Reinvention as an Instructional Design Heuristic 

Guided reinvention not only describes the overall approach of RME, but it can also 
be seen as an instructional design heuristic. Taken as a heuristic for design, the 
reinvention principle suggests the instructional designer look at the history of 
mathematics to see how certain mathematical practices developed over time. The 
designer is advised to especially look for potential conceptual barriers, dead ends, 
and breakthroughs. These may be taken into account when designing a potential 
reinvention route. As a second guideline the reinvention principle suggests 
investigating whether students’ informal interpretations and solutions might 
‘anticipate’ more formal mathematical practices. If so, students’ initially informal 
reasoning can be used as a starting point for the reinvention process. In summary, 
the designer may take both the history of mathematics and students’ informal 
interpretations as sources of inspiration for delineating a tentative, potential route 
along which reinvention might evolve.  
 As a special point of attention we may note that reinvention has both an 
individual and a collective aspect, it is the interaction between students in 
particular that function as a catalyst. The designer needs to develop instructional 
activities that are bound to give rise to a variety of student responses. What is 
aimed for is a variety in responses that to some extent mirrors the reinvention 
route. When some students come up with more advanced forms of reasoning than 
others, teachers can exploit these differences. They can try to frame the 
mathematical issue that underlies those differences as a topic for discussion. In 
orchestrating such a discussion, they can then foster the reinvention process. 
Without such differences, the teacher will not have a basis for organizing a 
productive classroom discussion, and will have to ask leading questions to solicit 
the preferred responses. 
 In relation to this, we may note that reinvention is intimately tied to the activity 
of mathematizing, more to vertical mathematization than to horizontal 
mathematization (which is more tied to mathematizing problem situations). In 
relation to this, we may distinguish between mathematical interest and pragmatic 
interest. One of the points of departure of RME is that contextual problems should 
not only be experientially real, the problems also have to be realistic. It has to be 
plausible for the students that someone wants to know the answer, thus the context 
has to offer a reason for wanting to know the answer. In this manner, students are 
to be motivated to solve contextual problems for pragmatic reasons. Vertical 
mathematizing, however, requires them to be interested in the mathematical 
aspects, for mathematics sake. This mathematical interest may not come naturally 
but has to be cultivated by the teacher by asking questions such as: What is the 
general principle here? Why does this work? Does it always work? Can we 
describe it in a more precise manner? We may assume that the teacher can foster 
the students’ mathematical interest by making mathematical questions a topic of 
conversation, and showing a genuine interest in the students’ mathematical 
reasoning. 
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Didactical Phenomenology as an Instructional Design Heuristic 

The second RME design heuristic concerns the didactical phenomenological 
analysis, or didactical phenomenology for short (Freudenthal, 1983). Here the word 
‘phenomenological’ refers to a phenomenology of mathematics. In this 
phenomenology, the focus is on how mathematical ‘thought-things’ (which may be 
concepts, procedures, or tools) organize – as Freudenthal (1983) puts it – certain 
phenomena. Knowing how certain phenomena are organized by the thought thing 
under consideration, one can envision how a task setting in which students are to 
mathematize those phenomena may create the need for them to develop the 
intended thought thing. In this manner, problem situations may be identified, which 
may be used as starting points for a reinvention process. Note that such starting-
point-situations may also be used to explore the students’ informal strategies. To 
find the phenomena that may constitute starting-point-situations, we may look at 
applications of the concept, procedure or tool under consideration. Assuming that 
mathematics has emerged as a result of solving practical problems, we may 
presume that the present-day applications encompass the phenomena, which 
originally had to be organized. Consequently the designer is advised to analyze 
present-day applications in order to find starting points for a reinvention route. 
Note, however, that as the students progress further in mathematics, applications 
may concern mathematics itself. Essential for valuable starting points is that they 
are experientially real for the students, that those concern situations, in which the 
students know how to act and reason sensibly. 

Emergent, Modeling as an Instructional Design Heuristic 

The third RME design heuristic is called emergent modelling (Gravemeijer, 1999). 
This design heuristic takes its point of departure in the activity of modelling. 
Modelling in this conception is an activity that students may employ when solving 
a contextual problem. Such a modelling activity might involve making drawings, 
diagrams, or tables, or it could involve developing informal notations or using 
conventional mathematical notations. The conjecture is that acting with the models 
will help the students to reinvent the more formal mathematics that is aimed for. 
Initially, the models come to the fore as context-specific models. The models refer 
to concrete or paradigmatic situations, which are experientially real for the 
students. Initial models should allow for informal strategies that correspond with 
situated solution strategies at the level of the situation of the contextual problem. 
Then, while the students gather more experience with similar problems, their 
attention may shift towards the mathematical relations and strategies. This helps 
them to further develop those mathematical relations, which enables them to use 
the model in a different manner: The model becomes more important as a base for 
reasoning about these mathematical relations than as a way of representing a 
contextual problem. In this manner, the model starts to become a means of support 
for more formal mathematics. Or more precisely: A model of informal 
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mathematical activity develops into a model for more formal mathematical 
reasoning.  
 Underlying this transformation is a gradual shift in level of activity, from 
‘referential level’ to a ‘general level’ (Gravemeijer, Cobb, Bowers, & Whitenack, 
2000). At the referential level, the model derives its meaning for the students from 
its reference to activity in the task setting. With help of the teacher, the attention is 
shifted towards the mathematical relations involved. At the general level, the 
model starts to derive meaning from these mathematical relations, and starts to 
become a model for more formal mathematical reasoning. Finally the students may 
reach the level of more formal mathematical activity, when a new piece of 
mathematical reality is formed, and mathematical reasoning is no longer dependent 
on the support of a model.  Note that although we may speak of a model that is first 
constituted as a ‘model of’ that gradually changes into a ‘model for’, the students 
actually will be working with a series of sub-models, which may take the form of 
inscriptions or tools. From the perspective of the researcher/designer however, the 
series of sub-models constitute an overarching model. It is this overarching model 
that co-evolves with some new mathematical reality. The emergent, modelling 
design heuristic asks of the designer to explicate this new mathematical reality, i.e., 
the framework of mathematical relations and the mathematical objects that 
constitute this mathematical reality. This explication is not only important for 
instructional design, it can also inform teachers about what mathematical relations 
to focus on in classroom discussions.  
 An issue of concern is that even though the designer intends for the use of 
inscriptions or tools to be experienced as bottom-up by the students, this will not 
necessarily be the case. The teacher will therefore have to try to monitor, what new 
sub-models signify for the students. Here we may use the term ‘imagery’ to refer to 
the question of whether acting with the tools evokes an image of earlier activities, 
on the basis of which the students can make sense of the new sub-models. 
 In addition, measures may be taken to ensure that new (sub-) models come to 
the fore as a natural extension of earlier activities. The teacher may, for instance, 
introduce a new way of symbolising in an informal off-hand manner, and wait and 
see if the students will appropriate this way of notating. A decisive criterion here is 
whether the students adopt and adapt the new form of symbolising in a flexible 
manner. Another way may be to try to create the need for a new tool by 
problematizing the current state of affairs, and asking the students for their 
solutions. Then, after that the solutions offered by the students have been 
discussed, the teacher may present the next tool as the solution that was chosen by 
someone in the given context. Even if the students do not come up with the next 
tool, the preceding discussion would at least have provided a basis on which the 
students could conclude that the teacher’s proposed solution was sensible under the 
given conditions.  
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RME Design Heuristics Clarified with a Local Instruction Theory for Flexible 
Arithmetic up to 20 

We may briefly return to our example of flexible arithmetic up to 20, to further 
elucidate the aforementioned design heuristics. The reinvention principle suggests 
to not just teach some ready-made strategies, such as ‘filling up ten’, or ‘using 
doubles’. Instead, the designers will ask themselves how flexible mental 
computation might emerge. The analysis of informal solution procedures showed 
that students may develop a framework of number relations that offers the building 
blocks for flexible mental computation (see also Greeno, 1991). In addition, we 
observed that ‘counting on’ and ‘counting back’ have their roots in counting as a 
means for establishing quantities.  
 For the didactical phenomenological analysis, we may refer to Freudenthal 
(1983), who observes that numbers organize the phenomenon of quantity, while 
addition organizes phenomena such as combining two sets – as in 5 cars and 3 cars 
or 5 marbles and 3 marbles. There are, however, he adds, other situations, where 
addition is not plainly recognizable as the union of two sets. Take for instance, 
John has 5 marbles, and Pete has 3 more. How many does Pete have? Here, the 
students must consider the imaginary set of Pete as split into two sets, and reason 
from there. He goes on to say that there are also spatial or temporal phenomena 
where one cannot speak of a union of two unstructured sets. With spatial or 
temporal phenomena such as adding 5 steps (of stairs) and 3 steps, 5 days and 3 
days, or 5 kilometres and 3 kilometres, counting is used to organize magnitudes, in 
which measuring the magnitude is articulated by the natural multiples of a unit. 
Continuous phenomena are made discrete by a one-to-one mapping of the 
successive intervals on a sequence of points that follow each other in space or time, 
in a process that in turn suggests a counting process. In line with this sequential 
character, the results of additions of magnitudes are obtained by counting on. In 
relation to this, Freudenthal (ibid, p. 99) points to the close relation between 
cardinal and ordinal numbers: ‘5+3 is defined cardinally, but from olden times it 
has been calculated ordinarily’. The result of 5+3 is obtained by starting with the 
mental 5, and counting on, 6, 7, 8. At the same time, it shows that counting 
strategies, such as counting on and counting back, rely on integrating the cardinal 
aspect of number (quantity) and the ordinal aspect of number (position/rank). Most 
addition and subtraction problems concern quantities, while the solution 
procedures consist of moving up and down the number sequence. From this we 
may conclude that it is important that the students connect the first and the latter. 
 For emergent modelling, we may focus on the role of the arithmetic rack, as it 
was elaborated in a research project in Nashville, Tennessee (Gravemeijer, Cobb, 
Bowers, & Whitenack, 2000). The arithmetic rack is designed with potential useful 
number relations in mind. In this manner, the students may use the rack as a means 
of scaffolding basic number relations, and as a basis for developing more elaborate 
frameworks of number relations. On a more practical level, the designer will first 
have to look for situations that can be modelled with the arithmetic rack. Here one 
may make use of instructional activities that are designed by Van den Brink 
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(1989), which involve the double-decker bus scenario. Initial tasks then concern 
different ways in which a given number of passengers could sit on the two decks of 
a double-decker bus. Follow-up activities involve situations in which some 
passengers get on and others get off the bus. Next the arithmetic rack can be 
introduced as a means of showing the number of passengers on each deck, and as 
means of keeping track of the number of people getting on or off the bus. In this 
way, the rack can initially function as a model of (the changes in) the number of 
passengers on the two decks. An important step in the modelling process will then 
be to ask the students to develop ways of notating their reasoning with the rack so 
that they can communicate it to others. Subsequent activities involve developing 
and negotiating symbolizations, the key criterion being that other children in the 
class could understand how the task had been solved. For example, the ways of 
reasoning with rack about 7+8 might be symbolized as shown in Figure 2. 
 

  7    1   

7    +   8

 

 7    +   8

 5     3   5    2

 

  3    5 

7    +   8 

 

  

8 = 7 +1 
7 + 7 = 14 
7 + 8 = 15 

         

7 = 5 + 2 
8 = 5 + 3  
5 + 5  = 10 
10 + 5 = 15 

       

 8 = 3+5  
7 + 3  = 10 
10 + 5 = 15 

 

Figure 2. Ways of visualizing arithmetic rack solution strategies. 

 By then, drawings of the way of reasoning with the rack will be functioning as 
models for more formal mathematical reasoning. Finally the student may start 
using number sentences without any auxiliary drawings. 

A Local Instruction Theory on Data Analysis as an Example 

To clarify the emergent modelling design heuristic a bit further, I will briefly 
discuss another example of a local instruction theory that is taken from a teaching 
experiment on data analysis carried out by Cobb, Gravemeijer, McClain and 
Konold in a 7th-grade (12 year-olds) classroom in Nashville (see also Gravemeijer 
& Cobb, 2006). The general goal of this local instruction theory is that the students 
come to view data sets as distributions, of which one can discern characteristics 
that are relevant when resolving issues concerning the situation where the 
measurements have been taken. The starting points for the instructional activities 
are realistic problems that provide a reason for analysing data. Having a reason is 
essential in our view, for this rationale guides the very process of data analysis. In 
conventional statistics courses, statistical measures like mean, mode, median, 
spread, quartiles, (relative) frequency, regression, and correlation are taught as a set 
of independent definitions. These statistical measures, however, are characteristics 
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of distributions. So, for these measures to have meaning, students have to have a 
notion of distributions as objects that can have certain characteristics. Likewise, 
conventional representations like histogram and box plot come to the fore as means 
to characterize distributions. We reasoned therefore, that instead of teaching 
statistical measures and representations as such, one should focus on helping 
students in developing the notion of distribution as an object.  
 The notion ‘distribution’ is closely tied to the graph with which we visualize a 
distribution. Distribution then can be thought of in terms of shape, density, and 
position. A way to think about such a graph is as a density function. This offers a 
way into a qualitative understanding of distribution. In such a conceptualization, 
the height of a point on the graph signifies the density of data points around that 
value. From a didactical phenomenological point of view, we may speak of the 
graph as a means for organizing density. Density in turn can be seen as means for 
organizing collections of data points in a space of possible data values. From the 
same phenomenological perspective, data points in a dot plot may be thought of as 
a way of getting a handle on a set of data. With such an analysis, we already have a 
rough outline of a series of sub models. In relation to this, we may describe the 
overarching model as ‘a graphical representation of the shape of a distribution’.  
 

 

Figure 3. Value-bar graph.  

 

 
 

Figure 4. Dot plot. 

 The most common graph of a distribution is the graph of a density function we 
discussed earlier. However, the graph to start the sequence with would have to be a 
graph that would most closely match an intuitive visualization of a measure for the 
students. This in our view is a scale line. Especially measures of a linear type, like 
‘length’, and ‘time’ are often represented by scale lines in primary school. These 
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considerations let to the decision to start with a graph that consists of value bars, 
where each value bar signifying a single measure (Figure 3). Within a magnitude-
value-bar graph shape, the distribution of the data values is visible in the way the 
endpoints of the value bars are distributed in regard to the axis. In relation to this, 
we can speak of a graphical representation of the distribution as a model of a set of 
measures. Next the students may come to see the dot plot as a more condensed 
form of a line plot that leaves out the value bars and only keeps the end points 
(Figure 4). Within a dot plot, the density of the data points in a given region 
translates itself in the way the dots are stacked. Consequently, the height of the 
stacked dots at a given position can be interpreted as a measure for the density at 
that position. In this sense, the visual shape of the dot plot can be seen as a 
qualitative precursor to the graph of a density function. This aspect can be further 
developed by having the students’ structure data into four equal groups, when 
resolving issues concerning the situations where the measurements have been 
taken. They may come to see the distance between two vertical bars that mark a 
quartile in a four-equal-groups display as indicating how much the data are 
‘bunched up’. Moreover, the median may start to function as an indicator of ‘where 
the hill is’ in a uni-modal distribution. Finally, the students are expected to begin to 
treat distributions as entities. In this regard, we may describe the four-equal groups 
displayed as a graphical representation of the distribution that started to function 
as a model of a model for reasoning about distributions. 

WHAT DOES IT TAKE TO ENACT RME? 

RME Theory and Local Instruction Theories 

After having depicted RME theory, I now move to the question, what are the 
implications of this theory for mathematics teacher education? I try to derive those 
implications from considering the question, what does it take to bring about 
instruction that is in tune with RME? I discern three requirements. As a first 
requirement, I argue that one has to have a sound idea about what the intended 
reinvention process may look like for a given topic. That is to say one has to have a 
plan for a possible reinvention route. A second requirement is that the students 
have to be willing to invent, which is less self-evident than it may sound. The third 
requirement concerns the capability of the teacher to support the intended 
reinvention process. I elaborate those three requirements in the following 
paragraphs. 

The Need for a Planned Reinvention Route 

In my view, designing reinvention processes is a very complicated task that 
surpasses the scope of what may be expected of teachers. I want to argue therefore 
that teachers should be offered a more general framework that enables them to 
design instructional activities on a day-to-day basis. Such a framework may be 
offered by a so-called local instruction theory, which consists of a theory about a 
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possible learning process for a given topic, and the means of supporting that 
process. A valuable feature of RME theory is that it is (being) developed by way of 
generalizing over exemplary instructional sequences, or local instruction theories. 
A consequence of this is that RME theory comes with a set of local instruction 
theories, which are consistent with RME. Each local instruction theory offers a 
description of, and rationale for, the envisioned learning path as it relates to a set of 
instructional activities for a specific topic (such as ‘addition and subtraction up to 
20’, ‘area’, ‘fractions’, and so forth). Those local instruction theories can function 
as frameworks of reference for teachers. Here we may refer to Simon’s (1995) 
notion of a ‘hypothetical learning trajectory’. Simon argues that a teacher who 
wants to build on the students’ thinking and activity, and at the same time work 
towards given learning goals has to consider what mental activities the students 
might engage in as they participate in the instructional activities, he or she is 
considering. A decisive criterion of choice then would be how those mental 
activities relate to the chosen learning goal. In relation to this, Simon (ibid) speaks 
of designing a hypothetical learning trajectory. He emphasizes the hypothetical 
character of these learning trajectories; the teachers are to analyse the reactions of 
the students in light of the stipulated learning trajectory to find out in how far the 
actual learning trajectory corresponds with what was envisioned. Based on this 
information the teacher has to construe new or adapted instructional activities in 
connection with a revised learning trajectory.  
 Local instruction theories can function as frameworks of reference in this 
process. The relation between the local instruction theory and the hypothetical 
learning trajectories can be elucidated with a travel metaphor (Simon, 1995). In 
terms of a travel metaphor, the local instruction theory offers a ‘travel plan’, which 
the teacher has to transpose into an actual ‘journey’ with his or her students. The 
idea is that the teachers will use their insight in the local instruction theory to 
choose instructional activities, and to design hypothetical learning trajectories for 
their own students. Here the teachers will orient themselves to the actual thinking 
and reasoning of their students. Consequently, they may look for forms of 
assessment that are tailored to revealing student thinking and reasoning. In line 
with this idea a RME approach to assessment has been developed that aims at 
creating opportunities for students to show what they know and can do. Instead of, 
as is often the case with a test, showing what students are not (yet) able to. This 
kind of assessment is also called ‘didactical assessment’ (Van den Heuvel-
Panhuizen & Becker, 2003) in that it tries to find footholds for instruction that may 
follow the test.  
 I close this section by noting, that the issue of how to document local instruction 
theories is not really resolved yet. The traditional form of textbooks and teacher 
guides will not be adequate. For, key in the kind of instruction that I discuss here is 
that it is responsive to the input of the students, and adaptable to the beliefs and 
concerns of the teachers. A possible solution may lay in an elaboration of the 
‘model-of/model-for’ shift that can be taken as the backbone of an RME 
instructional sequence. As noted before, that model can take on different 
manifestations during the realization of an instructional sequence. Those sub-
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models can be described as a chain of signification (Whitson, 1997), which details 
not only the manifestations and progression of the model, but also the evolving 
taken-as-shared meaning and purposes of the classroom community. The local 
instruction theory then can be described as an anticipated chain of signification, by 
describing the anticipated tools that will be used and the imagery, mathematical 
activity and mathematical practices that correspond to them (Gravemeijer, 2004). 

The Willingness of Students to (Re)Invent 

In the above, I extensively discussed one of the basic prerequisites for reinvention, 
the plan for a reinvention route. Another prerequisite is that the students are willing 
to invent. This seems a rather trivial point. I have to take into account, however, 
that students are often familiar with a classroom culture in which the classroom 
social norms (Cobb & Yackel, 1996) are that the teacher has the right answers, that 
the students are expected to follow given procedures, and that correct answers are 
more important than one’s own reasoning. In this type of classrooms teachers 
usually ask questions of which they already know the answer. Apart from being 
used to this situation, students have learned what to expect and what is expected 
from them. In relation to this, Brousseau (1988) speaks of an implicit ‘didactical 
contract’. Significant, however, is that the students have learned this by experience, 
not because the teacher told them so. This may be illustrated by research of Elbers 
(1988), who asked students in kindergarten, ‘What is heavier, red or blue?’ The 
students gave different answers, but what was striking that they gave answers at all. 
The explanation for this is that they already held very specific expectations for 
their role. For them, it was quite normal for the teacher to ask questions they could 
not answer. They had learned that they had to give an answer, any answer, to 
enable the teacher to proceed. Later on they might learn in retrospect why that 
question was asked. 
 In contrast to the traditional classroom culture, reinvention asks for an inquiry-
oriented classroom culture. The classroom has to work as a learning community. 
To make this happen, the students have to adopt classroom social norms such as 
the obligation to explain and justify their solutions. They have to be expected to try 
and understand other students’ reasoning, and to ask questions if they do not 
understand, and challenge arguments they do not agree with. In addition to those 
social norms, Cobb and Yackel (1996) discern socio-mathematical norms. Where 
the classroom social norms are, in a sense content free – they could yield for any 
topic – socio-mathematical norms relate to what mathematics is. These socio-
mathematical norms encompass, what counts as a mathematical problem, and what 
counts as a mathematical solution. Important also is, what counts as a more 
sophisticated solution, for this relates to vertical mathematizing. One has to have a 
norm for expecting what is mathematically more advanced to be able to advance in 
a reinvention process. In this respect, I may argue that socio-mathematical norms 
provide the basis for the intellectual autonomy of the students, as it enables them to 
decide for themselves on mathematical progress. 
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 In addition to appropriating inquiry-based norms, students also have to be 
willing to invest effort in solving mathematical problems, discussing solutions, and 
discussing the underlying ideas. The students’ willingness to participate in learning 
activities is the outcome of a reciprocal process that depends on both individual 
attributes and contextual features such as classroom climate and instructional 
support. Students may engage in learning activities for different reasons. The 
attitude of students in a mathematics classroom can be broadly divided in two 
categories, ego orientation and task orientation (Nicholls, Cobb, Wood, Yackel, & 
Patashnick, 1990). On the one hand, ego orientation implies that the student is very 
conscious of the way he or she might be perceived by others. Ego-oriented students 
are afraid to fail, or to look stupid in the eyes of their fellow students, or the 
teacher. As a consequence, they may choose not to even try to solve a given 
problem, in order to avoid embarrassment. Task orientation, on the other hand, 
implies that the student’s concern is with the task itself, and on finding ways of 
solving that task. Research shows that task orientation and ego orientation can be 
influenced by teachers.  
 Cobb, Yackel and Wood (1989) report on a study on a socio-constructivist 
classroom, where task orientation was fostered. Part of their approach was to 
change the classroom culture from one of competition, where students would 
compare themselves with each other, and with the criteria set by the teacher, into a 
classroom culture, where students would measure success by comparing their 
results with their own results earlier. One may think of the latter perspective as one 
similar to that of an amateur painter or amateur musician. An amateur musician 
would not think of comparing him- or herself with others; there would always be 
many people performing better. Instead an amateur musician would be pleased if 
he or she would master a piece, which he/she could not play some time ago. A 
similar situation is possible in a mathematics classroom, where the goal for the 
students would be personal growth. Here, experiencing an ‘Aha-Erlebnis’, will 
function as an incentive. In such a classroom, students might even protest at being 
given ‘the solution’, for that would deprive them from the satisfaction of figuring 
out things for themselves. Such a process of figuring out may very well have the 
character of collaborative work, where the students see themselves as community 
that works towards shared understanding. In fact, the aforementioned research of 
Cobb et al. (1989) shows that a classroom culture that emphases the exchange of 
ideas, and the development of mathematical understanding as a collaborative 
endeavor, fosters the task orientation of the students. It may be noted, however, 
that teachers need to strike a balance between creating freedom for the students to 
figure things out by themselves and offering support. Research of Turner, Midgley, 
Meyer, Gheen, Anderman, Kang, and Patrick (2002) shows that too much freedom 
or challenge can have a negative effect on student’s feeling of self-confidence, 
when the students may have too thin a knowledge base to build on. 
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Teacher Competencies for Guiding the Reinvention Process 

The aforementioned requirements already imply a central role for the teacher. The 
role and competencies of the teacher constitute a third requirement for reinvention. 
One may structure those roles and competencies in three categories, one that 
concerns the planning and design of instructional activities and hypothetical 
learning trajectories, one that concerns the classroom culture, and one that concerns 
the orchestration of the collective reinvention process.  
 A central competency in the category planning is that of designing, evaluating, 
and revising instructional activities and hypothetical learning trajectories that both 
fit the current state of affairs in the classroom and a given local instruction theory. 
In connection with this the teacher has to be able to identify experientially real 
starting points, a competency that may be supported by the ability to design and 
use didactical assessment tasks. Another competency concerns the identification of 
mathematical objects and mathematical relations at which the instructional 
activities are aimed. 
 In the category classroom culture, of course, the competency to establish and 
maintain the intended classroom social norms and social-mathematical norms 
comes to the fore as a central competency. In addition to this I may mention the 
ability to cultivate mathematical interest, and to foster task orientation over ego 
orientation. An additional competency will be that of the ability to instill in the 
students an orientation towards a perspective of personal growth. 
 The first two categories are complemented by competency to orchestrate the 
collective reinvention process. The teacher has to be able to see his or her plans 
through, and to grasp and assess the students’ thinking and reasoning. He or she 
has to be able to introduce a new way of symbolizing in an informal off-hand 
manner, or create the need for a new tool, and assess whether the new tool signifies 
earlier activities, and if the students adopt and adapt symbolizations or tools in a 
flexible manner. An additional competency concerns the ability to see what 
differences in mathematical understanding underlie the variation in student 
responses, to frame mathematical issues as topics for discussion on the basis of this 
insight, and to orchestrate productive whole-class discussions on those 
mathematical issues. 

HOW TO FOSTER RME TEACHER COMPETENCIES IN TEACHER EDUCATION 

The above list of teacher’s roles and competencies sets the agenda for teacher 
education. It will be impossible to give a detailed account of how mathematics 
teacher education can help students in developing those competencies. A golden 
rule, however, will be to teach what you preach. That is to say that the prospective 
teacher has to be educated in a way that mirrors the way they are expected to teach 
by themselves. One of the main themes will be to enable the prospective teachers 
to work with local RME instructional theories. In particular, a course such as this 
may be designed to have the students experience classroom norms, and reflect on 
how those norms are established and maintained. They may also experience, and 



KOENO GRAVEMEIJER 

300 

reflect upon, the role of imagery and history in the use of tools and inscriptions. 
And in a similar manner, task orientation, and personal growth may be addressed in 
a course that aims at hypothetical learning trajectories and local instruction 
theories. For now, I will limit myself to a brief elaboration of such a course. 
 Designing hypothetical learning trajectories on the basis of (externally 
developed) local instruction theories and resource materials differs significantly 
from following scripted textbook teacher guides. Mathematics teacher education 
therefore has to educate prospective teachers in working with local instruction 
theories. An overriding goal of such a preparation is to help them to develop an 
autonomous attitude, which allows them to take the liberty to interpret and adapt 
local instruction theories. More specifically, prospective teachers learn to construe, 
evaluate, and revise hypothetical learning trajectories on the basis of local 
instruction theories. In this respect it is fortunate that most local instruction theories 
are the product of design research (Gravemeijer & Cobb, 2006).   
 The methodological norm in design research is that the learning process of the 
researchers/designers should justify what they claim to have learned. In relation to 
this, one speaks of trackability (Smaling, 1992). Research reports should offer 
outsiders the opportunity to retrace the learning process that the 
designer/researcher went through. Or as Freudenthal (1991, p. 16) put it (who 
speaks of ‘developmental research’ instead of ‘design research’): 

Developmental research means: ‘experiencing the cyclic process of 
development and research so consciously, and reporting on it so candidly that 
it justifies itself, and that this experience can be transmitted to others to 
become their own experience. 

 Ideally, prospective teachers should be given the opportunity to experience such 
learning processes by some form of reinvention. Solving sequence related 
problems, anticipating solutions of primary or secondary school students, analysing 
student work and teaching episodes and such could be the constituents of such a 
reinvention process – where analysing student work and teaching episodes may 
take the form of multimedia video case studies (Dolk, Hertog, & Gravemeijer, 
2002). In addition, prospective teachers should be made familiar with the overall 
educational philosophy that underlies the local instruction theories that they may 
want to use. Otherwise, it will be difficult to come to grips with these instruction 
theories. This overall philosophy is an integral part of the justifications of local 
instruction theories. For, a local instruction theory is not just a theory of how to 
teach a given topic; it is a theory about how to teach that topic within the 
framework of a certain philosophy of mathematics education. 
 It may not be realistic to expect the prospective teachers to develop a detailed 
understanding of all local instruction theories he or she might need. Instead, 
prospective teachers might learn to make sense of new theories on their own 
accord. In relation to this it will be important that the prospective teacher comes to 
grips with key principles that hold for all local instruction theories within a given 
framework – which concern mathematics as an activity, guided reinvention, 
didactical phenomenology, and emergent modelling. This goal may be 
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accomplished by having prospective teachers analyse, experiment with, and reflect 
on, some exemplary local instruction theories. In such activities, they might gain 
insight in the task of developing hypothetical learning trajectories. Moreover, the 
key principles of RME may emerge in reflective activities under the guidance of 
the mathematics teacher educator. Apart from this, it can be argued that 
prospective teachers should be made familiar with a whole set of local instruction 
theories that covers the curriculum. Insight in the key principles underlying these 
local instruction theories may help to come to grips with the essence of these local 
theories. 
 In conclusion we may note that if we want to create mathematics classrooms 
within which students construct their own knowledge, mathematics teacher 
education must play a central role. RME can be seen as an exemplary elaboration 
of such an approach to mathematics education. The work from RME has produced 
a wide variety of instructional activities, instructional sequences, and (local) 
instructional theories. These, however, are merely resources; in the end, it is the 
teacher who enacts realistic mathematics education in the classroom. And, we will 
have to acknowledge that this kind of teaching is extremely demanding, which in 
turn possess a challenge to mathematics teacher education, both for prospective 
and practising teachers.  
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